Gas Phase Analysis of Water using Fourier Transform Infrared Spectroscopy

Presented to:
Design of Medical Devices Conference
Minneapolis, Minnesota
April 18, 2007
Absorption of Infrared Radiation
Fourier Transform
(Time Domain to Frequency)

Interferogram (Time Domain Spectrum)
Transformed Interferogram

- Frequency Domain
- Photon intensity at the detector (Y-axis) at each wavenumber cm\(^{-1}\) (X-axis)
 - Single beam spectrum

Single Beam \(\text{SB}_{\text{BKG}}\)

Water Absorbance (specific frequencies)

Single Beam \(\text{SB}_{\text{Sample}}\)
Transmission Spectrum of Water

- Simple intensity ratio (SB_{sample}/SB_{bg})
- Scales logarithmically with concentration

Transmittance:

$$T = \frac{I}{I_0}$$
Absorbance Spectrum

- Absorbance of Spectrum of Water
 - Absorbance = \log_{10} \frac{1}{\text{Transmission}}
 - Scales linearly with concentration

\[A = \log \frac{I_0}{I} \]
Beer's Law Summary

\[A_i = a_i \times b \times c_i \]

- **A_i**: Absorption at a given frequency of the \(i^{th} \) sample component
- **a_i**: Absorption coefficient (absorptivity) of the \(i^{th} \) sample component
- **b**: Pathlength of cell
- **c_i**: Concentration of \(i^{th} \) sample

A = \(\log_{10} \left(\frac{1}{T} \right) = -\log_{10} T \)

- **A**: Absorbance
- **T**: Transmittance
Absorption Coefficient & Pathlength

Certified gases are used to generate single component reference standards.

The absorption coefficient is a property of a material and it defines the extent to which a material absorbs energy.

- Affected by Temperature
- Affected by Pressure

Path length is fixed and calibrated.
Calibration Reference Spectra

(Prediction Model)

<table>
<thead>
<tr>
<th>Filename</th>
<th>Actual Conc (ppm)</th>
<th>Predicted Conc (ppm)</th>
<th>SEC (ppm)</th>
<th>Prediction %Error (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7_93H2O</td>
<td>7.93</td>
<td>7.93</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12_5H2O</td>
<td>12.54</td>
<td>12.069</td>
<td>0.056</td>
<td>-3.76</td>
</tr>
<tr>
<td>17_3H2O</td>
<td>17.32</td>
<td>16.874</td>
<td>0.070</td>
<td>-2.575</td>
</tr>
<tr>
<td>23_9H2O</td>
<td>23.89</td>
<td>24.593</td>
<td>0.207</td>
<td>2.943</td>
</tr>
<tr>
<td>39_4H2O</td>
<td>39.44</td>
<td>39.774</td>
<td>0.094</td>
<td>0.848</td>
</tr>
<tr>
<td>52_2H2O</td>
<td>52.22</td>
<td>50.788</td>
<td>0.182</td>
<td>-2.741</td>
</tr>
<tr>
<td>58_9H2O</td>
<td>58.9</td>
<td>58.073</td>
<td>0.194</td>
<td>-1.404</td>
</tr>
<tr>
<td>71_4H2O</td>
<td>71.41</td>
<td>74.851</td>
<td>0.285</td>
<td>4.819</td>
</tr>
</tbody>
</table>
CLS Prediction Model Linearity

\[y = 1.0099x \]

\[R^2 = 0.9965 \]
Drivers for Alternative Test Methods

- Seek method that minimizes product consumption with increased sensitivity
- Test methods which can meet multiple regulations (e.g. ISO 10993-7 & 10993-18)
- Determine compliant, cost effective “One Shot Analysis”
Innovative New Alternative to Existing Technologies

Static Headspace with Fourier Transform Infrared (FTIR) Detection

- Detection of Acids, Bases, and Volatiles
- Identification and Quantitation
- Fast collection and analysis time – Get Product to Market Faster
- Provides Low Limits of Detection required by Guidelines
FTIR Static Headspace (SHS): Outgassing Profile

FTIR Static HS Gas Cell

IR Source

IR Detector

Total Cumulative Outgassing vs Time

SAMPLE

FITR Spectra

Absorbance Units

Concentration

Time

PaceAnalytical
FTIR Static Headspace (SHS): Outgassing Profile

FTIR Static HS Gas Cell

Total Cumulative Outgassing vs Time

SAMPLE

IR Source

IR Detector

FITR Spectra

Absorbance Units

Concentration

Time

PaceAnalytical
FTIR Static Headspace (SHS): Outgassing Profile

FTIR Static HS Gas Cell

Total Cumulative Outgassing vs Time

IR Source

IR Detector

SAMPLE

FITR Spectra

Absorbance Units

Concentration

Time

PaceAnalytical
FTIR Static Headspace (SHS): Outgassing Profile

FTIR Static HS Gas Cell

IR Source

IR Detector

Total Cumulative Outgassing vs Time

FITR Spectra

Absorbance Units

Concentration

Time

PaceAnalytical
FTIR Static Headspace (SHS): Outgassing Profile

FTIR Static HS Gas Cell

IR Source

IR Detector

SAMPLE

FITR Spectra

Total Cumulative Outgassing vs Time

Concentration

Time

Absorbance Units

PaceAnalytical
Controlled Testing

Environment

- Dry Box Purged with house nitrogen
- Independent nitrogen purge ports
 - Located at opposing points on the box to enhance mixing.
 - Controlled flow (20 LPM) at each point.
 - 9 Volume exchanges per Hour
- Added independent measured and controlled flow to ante chamber.
 - Measurable volume exchanges
- Mounted fan inside Dry Box
 - Improved mixing.
- Added independent exhaust to Dry box.
FTIR Technologies

Gas Phase FTIR

Typical Bench Top FTIR

Absorbance / Wavenumber (cm⁻¹)
File # 2 : 71_4H2O
Water in G.5 N2, Cosameter 74.57 ppm -3.16 ppm BG= 71.41 ppm, 10m,0.981 atm, 121C,Avg files 34-36 BAL

Y-Zoom CURSOR
High Resolution vs. Low Resolution

Absorbance / Wavenumber (cm⁻¹)

High Resolution (0.5 cm⁻¹)

Low Resolution (4 cm⁻¹)
Analysis

- Reference spectra
 - Prepared on the instrument used for analysis but can be transferred to other instruments
 - Recorded at the experimental temperature / conditions
 - Concentration is measured using second technique or certified standard
 - Multiple concentrations are prepared to bracket the experiment range

- Reference spectra are implemented into a Classical Least Squares (CLS) fit routine

- Sample Spectra are quantified by comparison to Single Component Reference spectra using CLS

- Multiple Species can be quantified simultaneously
 - Analysis regions can be chosen to avoid interferences
 - Multiple regions can be chosen to circumvent saturated absorbance bands that may deviate from Beer’s Law
IDEAL GAS LAW
PV = nRT

Cell Volume = 5.7 L
Pressure = 1 atm
Molecular Weight = 18 g/mol
Cell Temperature = 121 °C
Water Contribution from System

- Dry Box Air
 - Rate: 0.041 PPMv / Minute

- Grade 5 Nitrogen
 - Rate: 0.041 PPMv / Minute

Concentration vs. Elapsed Time Graph
Dry Box Air Static Blank Data

Concentration (PPMv) vs. Elapsed Time (min)

Graph showing the concentration over time.
System Suitability

Contribution of FTIR Gas Cell to Water Vapor Concentration

<table>
<thead>
<tr>
<th>Trial</th>
<th>Elapsed Time</th>
<th>PPM increase</th>
<th>PPMv / Minute</th>
<th>µg / minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>29.8</td>
<td>1.414</td>
<td>0.0474</td>
<td>0.151</td>
</tr>
<tr>
<td>2</td>
<td>39.1</td>
<td>1.851</td>
<td>0.0473</td>
<td>0.150</td>
</tr>
<tr>
<td>3</td>
<td>109.3</td>
<td>4.434</td>
<td>0.0406</td>
<td>0.129</td>
</tr>
<tr>
<td>4</td>
<td>758.3</td>
<td>31.189</td>
<td>0.0411</td>
<td>0.131</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.0441</td>
<td>0.0441</td>
<td>0.140</td>
</tr>
<tr>
<td>% RSD</td>
<td></td>
<td>8.6 %</td>
<td>8.6 %</td>
<td>8.6 %</td>
</tr>
</tbody>
</table>
Table of Recoveries

Percent Recovery of Liquid Water Injected in the FTIR Gas Cell

<table>
<thead>
<tr>
<th>Spike</th>
<th>µl of Water Spiked</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.2</td>
<td>87</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>75</td>
</tr>
<tr>
<td>3</td>
<td>0.2</td>
<td>101</td>
</tr>
<tr>
<td>4</td>
<td>0.2</td>
<td>92</td>
</tr>
</tbody>
</table>

Average % Recovery: 89

% RSD: 13%
Gas Standard Recoveries

<table>
<thead>
<tr>
<th>Delivered Concentration (PPMv)</th>
<th>Percent Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.4</td>
<td>94%</td>
</tr>
<tr>
<td>38.6</td>
<td>106%</td>
</tr>
<tr>
<td>49.2</td>
<td>95%</td>
</tr>
<tr>
<td>51.0</td>
<td>102%</td>
</tr>
<tr>
<td>68.1</td>
<td>99%</td>
</tr>
</tbody>
</table>
Biodegradable Polymer
Lot 1 (125 mg vs. 25 mg)

Outgassing Concentration (PPMv) – ~125 mg of Material
Cell Baseline (PPMv) – Sept ‘06

Outgassing Concentration (PPMv) – ~25 mg of Material
Cell Baseline (PPMv) - Jan ‘07

Elapsed Time (minutes)
Outgassing Profile

25mg of Biodegradable Polymer

- Grade 5.0 Nitrogen Purge
- Dry Box Air Purge
- Dry Box Air Static
- Static Cell Blank 0.41 PPMv
- Increase Over 25min.

Concentration (PPMv) vs. Time (Min.)

25 mg Biodegradable Polymer

1300 µg/g Difference
Lot 1 Matrix Spike

Spike 0.1 ul water
% Recovery = 91

Purge Cell with Nitrogen

Spike Additional 0.1ul water
% Recovery = 105

5 Parts Outgassed Static

Spike 0.1ul water
% Recovery = 88
Table Recoveries

<table>
<thead>
<tr>
<th>Spike Volume (µL)</th>
<th>5 – Lot 1 Spike (% Recovery)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trial 2 Spike 1</td>
<td>91</td>
</tr>
<tr>
<td>Trial 2 Spike 2</td>
<td>88</td>
</tr>
<tr>
<td>Trial 2 Spike 3</td>
<td>105</td>
</tr>
<tr>
<td>Trial 3 Spike 1</td>
<td>89</td>
</tr>
<tr>
<td>Trial 3 Spike 2</td>
<td>114</td>
</tr>
<tr>
<td>Trial 3 Spike 3</td>
<td>117</td>
</tr>
<tr>
<td>Trial 4 Spike 1</td>
<td>99</td>
</tr>
<tr>
<td>Average</td>
<td>99</td>
</tr>
<tr>
<td>% RSD</td>
<td>12%</td>
</tr>
</tbody>
</table>
Specificity

Water Spectrum

Bio-degradable Polymer Spectrum

Absorbance / Wavenumber (cm⁻¹)
Method Advantages

- Real-time data collection allows calculation of release rates, formation of compounds, & outgassing endpoints
- FTIR method allows simultaneous data collection for materials characterization (ISO 10993-18)
Method Advantages

- FTIR is additive, interferences can be subtracted
- Multiple compounds can be detected in a single test using fewer devices for testing
- Limits of Detection can be lower than GC methods
Method Advantages

- Broad range of selectivity for detection of compounds (organic and inorganic)
- Multiple spectral regions can be used to quantify compounds
- Recent ASTM, NIOSH & EPA approvals
- Methods have been validated